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ABSTRACT. Let do(n) = Pn, the nth prime, for n > 1, and let dk+l(n) = 

Idk(n) - dk(n + 1)1 for k > 0, n > 1. A well-known conjecture, usually 
ascribed to Gilbreath but actually due to Proth in the 19th century, says that 
dk(l) = 1 for all k > 1. This paper reports on a computation that verified 
this conjecture for k < ir( 1013) 3 x 1011 . It also discusses the evidence and 
the heuristics about this conjecture. It is very likely that similar conjectures are 
also valid for many other integer sequences. 

1. INTRODUCTION 

Let P1 = 2, P2 = 3, ... be the primes in their natural ordering, and set 

(I. 1) ~do(n)= Pn, n > I 

dk+l(n) = Idk(n) - dk(n + l)I, k > 0, n > 1. 

Table 1 (next page) shows dk(n) for 0 < k < 20, 1 < n < 20. Note that 
dk(1) = 1 for 1 < k < 20. As was pointed out by H. C. Williams, Proth [15] 
claimed to prove that dk(1) = 1 for all k > 1, but his proof was faulty. More 
recently, Gilbreath (unpublished) independently conjectured that dk(1) = 1 for 
all k > 1 . (See Problem AlO in [7], and also [8].) This is usually referred to as 
Gilbreath's conjecture. 

Gilbreath's conjecture was verified for k < 63,419, that is for all primes 
< 792,731 , by Killgrove and Ralston [8], who were fellow students of Gilbreath 
at UCLA in the late 1 950s. This paper reports on a verification of this conjecture 
for all primes < 1013, so that dk(1) = 1 for 1 < k < 3.4 x 1011 . The 
computational results are presented in ?3, and the algorithms that were used 
are described in ?4. 

For a general sequence do(n), to compute dk(l) it is necessary to compute 

dj(i) for all i + j < k + 1, so that for k - 3.4 x 1011 approximately 5 x 1022 
numbers have to be computed, far too many for the technology of today or the 
near future. The computations for do(n) = Pn were possible because of special 
properties of the primes. Note that dk(l) is odd and dk(2), dk(3), ... , are 
even for all k > 1. If for some N we find a K such that dK(1) = 1 while 
dK(n) = 0 or 2 for all 1 < n < N, then we can conclude that dk(l) = 1 for 
K < k < N + K - 1 . Let G(N) denote the minimal k (if it exists) such that 

dj(l) = 1 for 1 < j < k and dk(n) = 0 or 2 for 1 < n < N. Computations 
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TABLE 1. Iterated differences dk(n) for 0 < k < 20, 1 < n < 20 

k\n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 

1 1 2 2 4 2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 
2 1 0 2 2 2 2 2 2 4 4 2 2 2 2 0 4 4 2 2 4 
3 1 2 0 0 0 0 0 2 0 2 0 0 0 2 4 0 2 0 2 2 
4 1 2 0 0 0 0 2 2 2 2 0 0 2 2 4 2 2 2 0 2 
5 1 2 0 0 0 2 0 0 0 2 0 2 0 2 2 0 0 2 2 2 
6 1 2 0 0 2 2 0 0 2 2 2 2 2 0 2 0 2 0 0 0 
7 1 2 0 2 0 2 0 2 0 0 0 0 2 2 2 2 2 0 0 0 
8 1 2 2 2 2 2 2 2 0 0 0 2 0 0 0 0 2 0 0 0 
9 1 0 0 0 0 0 0 2 0 0 2 2 0 0 0 2 2 0 0 0 

10 1 0 0 0 0 0 2 2 0 2 0 2 0 0 2 0 2 0 0 2 
11 1 0 0 0 0 2 0 2 2 2 2 2 0 2 2 2 2 0 2 2 
12 1 0 0 0 2 2 2 0 0 0 0 2 2 0 0 0 2 2 0 2 
13 1 0 0 2 0 0 2 0 0 0 2 0 2 0 0 2 0 2 2 2 
14 1 0 2 2 0 2 2 0 0 2 2 2 2 0 2 2 2 0 0 2 
15 1 2 0 2 2 0 2 0 2 0 0 0 2 2 0 0 2 0 2 0 
16 1 2 2 0 2 2 2 2 2 0 0 2 0 2 0 2 2 2 2 0 
17 1 0 2 2 0 0 0 0 2 0 2 2 2 2 2 0 0 0 2 0 
18 1 2 0 2 0 0 0 2 2 2 0 0 0 0 2 0 0 2 2 0 
19 1 2 2 2 0 0 2 0 0 2 0 0 0 2 2 0 2 0 2 0 
20 1 0 0 2 0 2 2 0 2 2 0 0 2 0 2 2 2 2 2 0 

show that G(N) does exist for all N that have been checked and is small. 
Table 2 presents some values. (Similar observations have been made before, 
cf. pp. 34-35 in [17].) 

A rigorous proof of Gilbreath's conjecture appears out of reach, given our 
knowledge of primes. Maximal gaps between consecutive primes around x are 
thought to be not much larger than (log x)2. (There is a conjecture of Cramer 
[5] that these gaps are O((logx)2), and numerical evidence [3, 4, 20] supports 
this conjecture as well as a slightly stronger one of Shanks [16]. There are 
heuristic arguments, based on work of Maier [9], that suggest the true order 
of magnitude might be slightly larger, but at most by some fractional power 
of loglogx.) However, the best published result is that of Mozzochi [10], 
namely that these gaps are < x0548 for large x, and even on the assumption 
of the Riemann Hypothesis the bound for gaps can currently be lowered only to 

TABLE 2. Smallest k such that dk(n) = 0, 1, or 2 for all n < 7(x) 

x 7(X) G(7(X)) 

102 25 5 
103 168 15 
104 1,229 35 
105 9,592 65 
106 78,498 95 
107 664,579 135 
108 5,761,455 175 
109 50,847,534 248 
1010 455,052,511 329 
1o0l 4,118,054,813 417 
1 012 37,607,912,018 481 
1013 346,065,536,839 635 
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xl/2+O(l) as x -o 00. Further, gaps are thought to behave randomly, but nothing 
has been proved in this direction. Thus, it is conceivable that for some n, d, (n) 
is huge, while d1 (j) for 1 < j < n - 1 are small and evenly distributed, so that 
d2(n - 1), d3(n - 2), . .. , dn (1) are all large. 

Section 2 discusses some heuristics which indicate that Gilbreath's conjecture 
is likely to be true. They also indicate what results might suffice to prove this 
conjecture, and support the suggestion that corresponding conjectures are likely 
to hold for many other sequences. 

2. HEURISTICS 

The Gilbreath conjecture appears difficult because there are few tools for 
studying absolute values of differences of a sequence. We will argue that this 
difficulty is not serious, and that a proof of Gilbreath's conjecture could probably 
be obtained if we could prove results about primes that appear much simpler. 
Unfortunately, those results are also unreachable with known tools. 

The dk(n) for k > 1, n > 2, are even, and so dk(n) _ 0 or 2 (mod 4) in 
that range. We note that the definition (1 .1) then implies that 

(2.2) dk+l(n) _dk(n) + dk(n + 1) (mod 4) 

for k > 1, n > 2. This converts a problem defined by absolute values into 
one involving linear congruences modulo 4. Further, these congruences are 
of the simplest possible type, those that occur in Pascal's triangle modulo 2. 
(Modulus 4 arises only because of the factor 2 that is present in the dk(n).) 
If the primes are truly as random as they appear, the di (n) modulo 4 be- 
have randomly, and then the linear congruence (2.2) suggests that the dk(n) 
(mod 4) are random. It seems likely, therefore, that about half of the dk(n) 
will be 0 (mod 4) and half will be 2 (mod 4), with neighboring values almost 
independent. Numerical evidence supports the conjecture that the di (n)/2, 
reduced modulo 2, are asymptotically independent for large n. (This is true 
only asymptotically, though, and among the di (n)/2 for small n, there is an 
excess of odd ones, so that 2956 of the d1 (n)/2 for 2 < n < 5001 are odd, for 
example. Such dependencies among small primes were apparently first noted by 
F. Roesler and his students in unpublished work about six years ago.) This inde- 
pendence follows also from the Cramer probabilistic model [5], which predicts 
that gaps between consecutive primes follow the Poisson law. There is a proof 
by Gallagher [6] that a form of the Poisson law for prime gaps follows from a 
quantitative form of the Hardy-Littlewood prime k-tuple conjecture, and one 
can apply Gallagher's arguments directly to conclude that the di (n)/2 reduced 
modulo 2 are independent for nearby values of n. At present, no method is 
available for proving anything rigorously. If one could prove that the d1 (n) 
modulo 4 are asymptotically independent, the proof might provide enough ma- 
chinery to show that along any path through which a large d, (n) (which would, 
after all, have to be < n0 55 for n large) could possibly produce a large dk (1), 
there would be enough collisions with nonzero values of dj(m) to reduce the 
influence of this large difference. (What complicates a possible analysis of this 
kind is that a large di (n) would not necessarily produce dn (1) > 1 , but possibly 
only dm(l) > 1 for some m > n .) 
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The arguments above apply to many other sequences in which the first ele- 
ment is a 1, the others even, and where the gaps between consecutive elements 
are not too large and are sufficiently random. Therefore, as has been observed 
before (cf. Problem Al0 of [7]), there is probably not too much special about 
the primes in Gilbreath's conjecture. 

3. COMPUTATIONAL RESULTS 

Table 2 shows the value of G(N) for various N up to N = 7I(1013). The 
function G(N) describes the extreme behavior that is observed. To consider the 
average behavior, let g(n) for n > 2 be the least k such that dj (n) = 0 or 2 for 
k < j < k + 1000 . (It is likely that for all n that were computed, dj(n) = 0 or 
2 for all j > g(n) , but we cannot prove that. If true, it would imply Gilbreath's 
conjecture.) The average value of g(n) (derived from sampling over intervals 
of length 8 x 107) is presented in Table 3 for several values of n. The values 
of g(n) are considerably smaller than G(N), and this was used to increase the 
speed of the algorithm, as is noted in ?4. 

TABLE 3. Average values of g(n) for n near N 

N Average of g(n) 

108 22.1 
1010 27.0 
1012 32.8 

TABLE 4. Average values of dk (n) for various k, averaged over 
289182 values of n near 7r(1012) 

k average of dk(n) 

1 27.66 
2 25.51 
3 19.63 
4 19.69 
5 13.50 

10 8.33 
20 4.93 
50 1.76 

100 1.15 
150 1.01 

Figures 1-3 show graphs of dk(n) for 71(1012) + 1 < n < 7r(1012) + 104 
for k = 1, 50, and 100. This interval appears to be typical, and the graphs 
show that the process quickly reduces almost all entries to 0 and 2 (the two 
heavy lines in Figures 2 and 3), with only a few large values that require many 
additional iterations to reduce. Table 4 shows average values of dk(n) for 
71(1012) + 1 < n < 7r(1012) + 71(8 x 106) = 7r(1012)) + 289182 and various 
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FIGURE 3. Differences dloo(n) for 104 primes near 1012 

values of k. In this set, dk(n) is reduced to 0 and 2 for k = 213. We note 
that the average values of dk (n) are not monotone decreasing with k.- 

At the end of the Introduction, we noted that if huge gaps between consec- 
utive primes existed, then Gilbreath's conjecture might be false. Large values 
of g(n) (and therefore of G(N)) do appear to be associated with large prime 
gaps. Every large value of g(n) that was looked at carefully (a very small se- 
lection, it should be stressed) was due to a large prime gap. There were some 
large prime gaps that did not lead to large values of g(n), since other prime 
gaps nearby served to reduce it. Statistically, though, the association between 
large prime gaps and large values of g(n) is noticeable. Over 1 04 blocks of 
length 8 x 106 each around 5.2 5 x 1012 (see ?4 for a definition), the correla- 
tion between maximal values of g(n) and maximal prime gaps in a block was 
0.52. The largest value of- g(n) that was found, g(n) = 635 for n close to 
7r(7.17716 x 1012 ), is due to the prime gap 674, which is the largest one up to 
that height ([3, 20]). The second largest value of g(n) , g(n) = 589 for n close 
to 7r(2.6 1494 X 1012) , is due to the prime gap 652, which is also the largest one 
up to its height. 

To provide some information about large primes, computations were also 
done with a set of primes near 1050 that had been computed by the author 
earlier for a different purpose. Let uo(l) < u0(2) < < uo(8737) be the 
primes in the interval [0,150?06, and let Uk?1(fl) =I Uk(fl)- Uk(fl ?1 

for k > 0, n + k < 8737. It was found that max1<n<8736 uI (n) = 920, and 
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u436(n) = 0 or 2 for all 1 < n < 8301, so that 436 iterations sufficed to reduce 
this finite sequence. 

The interval [10100, 10100 + 107] was also tested. Deterministic primality 
tests would have required too much time, so this interval was first sieved by 
small primes, and then the remaining elements were tested using the probable 
prime tests in the Maple symbolic manipulation system. Thus, although the 
43271 integers that were found to be all the probable primes are likely to be 
prime, this has not been rigorously established. The largest gaps between any 
two consecutive probable primes was 2592, and 1417 iterations were required 
to reduce the iterated differences to 0's and 2's. 

4. ALGORITHMS 

Computation was performed in blocks B = [bl, b2] of integers from b, 
(which was always even) to b2 (which was odd), with the length of the block 
varying between 5 x 105 and 8 x 106. The first step was to compute the 
primes in B using a previously computed table of primes < b112. There is 
an extensive literature on prime number sieves (for example [1, 2, 11, 12, 13, 
14, 18, 19]) and there are some theoretically extremely fast algorithms, such 
as the Pritchard method [11] that finds all primes < x in O(x (log log x)- 1) 
arithmetic operations. However, for numbers of the sizes considered here, the 
conventional versions of the sieve of Eratosthenes are both faster and simpler 
to implement (cf. [19]), and so an algorithm similar to the "segmented sieve" of 
Bays and Hudson [1] and of Brent [3] was used. Since on the processor that was 
used access to memory was more of a bottleneck than processor speed, some of 
the operations were segmented further so as to fit into the cache memory. 

Once the primes in a block B were determined, they were used together with 
the last 1000 primes from the preceding block to carry out the second phase, the 
absolute value of difference iterations. (The number 1000 was chosen to exceed 
anticipated values of G(N) .) Between 50 and 75 iterations were performed on 
the whole array, and this sufficed to reduce most entries to 0's and 2's. This 
procedure took most of the computing time of the second phase. Finally, the 
remaining values of dk(n) > 2 were grouped into sets that were isolated from 
each other, and further iterations were performed on those sets. The block 
B = [1012, 1012 + 8 x 106 - 1], which appears to be rather typical, contained 
289,182 primes. After 75 iterations, there were 4640 values of n with d75(n) > 
2, and they were grouped into 516 sets which together with the 0 and 2 entries 
that were associated covered 18, 698 values of n. (Enough of the adjoining 
0 and 2 entries were included to ensure validity of the computation.) This 
procedure substantially improved the performance of the algorithm. Further 
speedups can be obtained by more sophisticated versions of this strategy. 

Programs were written in Fortran. They were run on a Silicon Graphics 4D- 
220 computer that has 4 R3000 MIPS Computers 25 MHz processors, each 
rated at about 18 mips, and 128 Mbytes of main memory. (The memory that 
was required for the programs varied between 5 and 20 megabytes, so was not a 
constraint.) Programs were run at a low priority so as to use only spare cycles. 
The code was not carefully optimized, and a speedup by a factor of 2 can prob- 
ably be achieved. Total run time (for a single processor) was several months, 
with about 2 seconds necessary to process an interval of length 106. About half 
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the machine time was spent in sieving for primes, and half in computing the 
iterated absolute values of the differences. 

There is some question about the reliability of a computation as long as this 
one, especially since there are no easy methods for checking the results. The 
results stated in the text and in the tables are thought to be correct, but cannot 
be fully guaranteed. All instances where a value of g(n) > 500 was found were 
checked, and one error was discovered that way. The block B = [M, M + 8 x 
106) for M = 8.972168 x 1012 had been processed in two separate runs which 
gave maximal values of g(n) for n E B of 914 and 261, respectively, with the 
higher value supposedly due to a prime gap of 1158. There is no such gap at 
this height, and 261 is the correct value, as additional computations showed. It 
was not possible to find out what caused the error. 

BIBLIOGRAPHY 

1. C. Bays and R. H. Hudson, The segmented sieve of Eratosthenes and primes in arithmetic 
progressions to 1012, BIT 17 (1977), 12 1-127. 

2. S. A. Bengelloun, An incremental primal sieve, Acta Inform. 23 (1986), 119-125. 

3. R. P. Brent, The first occurrence of large gaps between successive primes, Math. Comp. 27 
(1973), 959-963. 

4. , Thefirst occurrence of certain large prime gaps, Math. Comp. 35 (1980), 1435-1436. 

5. H. Cramer, On the order of magnitude of the difference between consecutive prime numbers, 
Acta Arith. 2 (1937), 23-46. 

6. P. X. Gallagher, On the distribution of primes in short intervals, Mathematika 23 (1976), 
4-9. 

7. R. K. Guy, Unsolved problems in number theory, Springer-Verlag, Berlin and New York, 
1981. 

8. R. B. Killgrove and K. E. Ralston, On a conjecture concerning the primes, Math. Comp. 
(Math. Tables Aids Comp.) 13 (1959), 121-122. 

9. H. Maier, Primes in short intervals, Michigan Math. J. 32 (1985), 221-225. 

10. C. J. Mozzochi, On the difference between consecutive primes, J. Number Theory 24 (1986), 
181-187. 

11. P. Pritchard, A sublinear additive sieve for finding prime numbers, Comm. ACM 24 (1981), 
18-23. 

12. , Explaining the wheel sieve, Acta Inform. 17 (1982), 477-485. 

13. , Fast compact prime number sieves (among others), J. Algorithms 4 (1983), 332-344. 

14. , Linear prime-number sieves; A family tree, Sci. Comput. Programming 9 (1987), 
17-35. 

15. F. Proth, Sur la serie des nombres premiers, Nouvelle Correspondance Mathematique 4 
(1878), 236-240. 

16. D. Shanks, On maximal gaps between successive primes, Math. Comp. 18 (1964), 646-651. 

17. W. Sierpinski, A selection of problems in the theory of numbers, Pergamon Press, Oxford, 
1964. 

18. J. Sorenson, An introduction to prime number sieves, Computer Science Technical Report 
#909, Univ. of Wisconsin-Madison, Jan. 1990. 

19. , An analysis of two prime number sieves, Computer Science Technical Report # 1028, 
Univ. of Wisconsin-Madison, June 1991. 

20. J. Young and A. Potler, First occurrence prime gaps, Math. Comp. 52 (1989), 221-224. 

AT&T BELL LABORATORIES, MURRAY HILL, NEW JERSEY 07974 
E-mail address: amo@research.att.com 


	Cit r565_c578: 


